

 ARL-TN-0673 ● MAY 2015

 US Army Research Laboratory

A Communication Protocol for CyAMS and the
Cyber Fighter Associate Interface

by David Harman, Scott Brown, Brian Henz, and Lisa M Marvel

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the

Army position unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorse-

ment or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

 ARL-TN-0673 ● MAY 2015

 US Army Research Laboratory

A Communication Protocol for CyAMS and the
Cyber Fighter Associate Interface

by David Harman
College Qualified Leaders Student, University of Maryland,
College Park

Scott Brown
Secure Mission Solutions

Brian Henz and Lisa M Marvel
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

FOR OFFICIAL USE ONLY (delete if not FOUO)

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid

OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

May 2015

2. REPORT TYPE

Technical Note

3. DATES COVERED (From - To)

June 2014–January 2015

4. TITLE AND SUBTITLE

A Communication Protocol for CyAMS and the Cyber Fighter Associate

Interface

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

David Harman, Scott Brown, Brian Henz, and Lisa M Marvel

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory

ATTN: RDRL-CIN-D

Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION REPORT NUMBER

ARL-TN-0673

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

In the future, cyber attacks will have a growing effect on the outcome of military operations. The Cyber Fighter Associate

(CyFiA) is a decision support program that works with the cyber network modeling and simulation system “CyAMS”. The

CyFiA will allow network security personnel to keep mission integrity through the use of cyber agility maneuvers. The CyFiA

is being tested on CyAMS, a tool that uses an ns-3-based large network simulator. A large of amount of information needs to

be exchanged between these 2 programs, and an efficient protocol and method for communication is required. A communica-

tion protocol utilizing specific ports is described in this report. It is this protocol that enables the CyFiA programs to com-

municate and operate in large network simulations.

15. SUBJECT TERMS

cyber modeling, simulation, cyber security, software patch management, tactical networks

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

28

19a. NAME OF RESPONSIBLE PERSON

Lisa M Marvel

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

410-278-6508
 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures iv

Preface v

1. Introduction and Background 1

2. Design 2

2.1 Protocol 3

2.2 Communications Program Output 7

2.3 Program Flow 8

3. Conclusion and Future Work 9

4. References 11

Appendix. Code Listing 13

Distribution List 19

iv

List of Figures

Fig. 1 Model showing the port protocol between the programs4

Fig. 2 World Wind GUI ...6

Fig. 3 Program modeling data being received by the Cyber Associate and
Risk-Cost program ...7

Fig. 4 Test demonstrating the communications program sending and
receiving information ...8

Fig. 5 Flowchart showing the progression of the program9

v

Preface

This report documents a portion of a larger project. There are 2 related works that

were done in concert. The first is the Cyber Fighter Associate, which is currently

in press with the US Army Research Laboratory (ARL).1 The second is Cost Com-

putations for Cyber Fighter Associate, also documented in an ARL technical note,

ARL-TN-0674.2

1 Huber C, Marvel LM. Cyber fighter associate. Aberdeen Proving Ground (MD): Army Research Labor-

atory (US); in press.
2 Erbs A, Marvel LM. Cost computations for cyber fighter associate. Aberdeen Proving Ground (MD):

Army Research Laboratory (US); 2015 May. Report No.: ARL-TN-0674.

vi

INTENTIONALLY LEFT BLANK.

1

1

1. Introduction and Background

As the military has adopted more networked equipment, the opportunity for cyber

attacks to occur has also risen. To mitigate the effect these attacks have on a mis-

sion, network administrators and security experts must be able to decide on the best

course of action based on many factors. The Cyber Fighter Associate (CyFiA) will

help decide the best course of action given a set of cyber agility maneuvers by

measuring the cost and utility of potential maneuvers, along with node and network

facts, to selecting the maneuvers that will lead to mission success.

The idea of the CyFiA comes from a line of decision-making programs starting

with the Pilot Associate. The Pilot Associate was a system created to assist pilots

in making decisions quickly (Smith 2004). The Warfighter Associate (Buchler et

al. 2013) is a more recent program that is based on the same concepts as the Pilot

Associate. It is meant to assist military decision making on the ground in a variety

of different scenarios. Both of these programs rely on “concepts such as cognitive

workload, multi-tasking, task completion timing, force synchronization, infor-

mation sharing, and decision quality” (Buchler et al. 2013). However, the main

overarching concept is the Observe, Orient, Decide, and Act (OODA) loop. The

OODA loop is a military decision-making process that allows personnel to quickly

and effectively respond to a situation. Currently under development, the CyFiA is

a program based on the concepts used in the aforementioned programs. Unlike pre-

vious programs, however, the CyFiA is meant to analyze networks, apply agility

maneuvers to accomplish a mission, and make decisions to preserve their integrity.

The CyFiA will suggest agility maneuvers to accomplish a mission in response to

a vulnerability or threat (known infection). The first mission for the CyFiA is to

evaluate agility maneuvers and to provide recommendations for a patch manage-

ment mission. These maneuvers are a set of various actions that can be used to

prevent the propagation of an attack by patching a device so it is immune to the

attack. The CyFiA is meant to be expandable to allow for new agility maneuvers to

be added in the future.

To test the effectiveness of the CyFiA, we are leveraging a program called Cyber

Army Modeling and Simulation (CyAMS), which makes use of the ns-3 network

simulator, a discrete-event network simulator for Internet systems (ns-3 2004). Cy-

AMS can model very large-scale networks with the help of a high-performance-

computing system. Currently, CyAMS is implemented on a system called Thufir.

Thurfir is a hybrid computer mixing graphics-processing unit (GPU) and standards

cores. It has 6,576 total compute cores. CyAMS has demonstrated the ability to

2

2

model networks containing up to 35 million nodes, so using CyAMS on Thufir will

be a very effective test bed for the CyFiA.

To accomplish agility maneuver simulations for the large simulated networks, there

needs to be a method to transfer the considerable amount of data from CyAMS to

the CyFiA knowledge engine. Therefore, we designed and developed a communi-

cations program that transfers the data between the separate programs.

The overall objective of this portion of the project is to define a protocol for com-

munication between the different programs and create a testing program to confirm

successful operation. To enable this overarching objective, we needed to use an

efficient and flexible means of communication.

2. Design

The CyFiA currently consists of 3 parts: the CyFiA knowledge-based system, the

Risk-Cost Calculation program, and CyAMS. The network is being simulated on

CyAMS. The Risk-Cost Calculation program needs input from CyAMS to calculate

cost/utility, and they provide information to the CyFiA knowledge-based engine so

it can recommend agility maneuvers to CyAMS. There needs to be frequent com-

munication between the programs, so we defined a protocol to do this. A protocol

is a set of formalized rules that explains how data are communicated over a net-

work. Our protocol relies on the exchange of User Datagram Protocol (UDP) pack-

ets utilizing specific ports. UDP is a minimal message-oriented Transport Layer

Protocol (protocol is documented in IETF RFC 768 [Postel 1980]) that allows for

efficient message passing between programs and computers.

To support the CyFiA, the following information for each node needs to be ex-

changed between the programs:

• Location (latitude/longitude)

• Capability and operating system

• Node health information

• Edge endpoint and communication throughput

• Battery information

• State change (agility maneuver, health, etc.)

• Patch size

• Graphical user interface (GUI) update information (state change, GUI in-

formation)

3

3

As the CyFiA project continues, additional information will need to be shared, so

we designed an expandable communication protocol to enable this sharing.

2.1 Protocol

Our expandable protocol was designed to allow a high data transfer rate as well as

the ability to add functionality to the programs in the future. Figure 1 depicts a

visual representation of the communication exchange protocol. Each program is

represented as a table with a blue heading. We selected port numbers starting at

Port 3010. Starting from the left side of the graphic, we can see that CyAMS pro-

vides various inputs to the communications program. More specifically, it sends

data using ports starting at 3010 incremented by 10 (3010 receives decisions from

the CyFiA, and 3020 is not used for consistency purposes). Ports in the 3000 range

were chosen because they were not commonly used by other programs in our envi-

ronment. The communications program distributes information between different

programs. As the communications program receives information from CyAMS, it

resends the information to the CyFiA knowledge tool and Risk-Cost Analysis pro-

gram. Although we are running these programs on the same machine for testing

purposes, sockets do not permit listening and sending on the same port. Therefore,

whichever port CyAMS sends on, the communications program will resend on that

port, plus 1 for CyFiA or plus 2 for Risk-Cost (e.g., CyAMS sends on 3040, and

CyFiA would receive on 3041). There are 2 ports that are not consistent with the

rest of the system. Port 3082 is used by CyFiA to receive data about patch sizes

from Risk-Cost, and Risk-Cost sends patch sizes to the GUI on port 4000. Each

port that sends information has its own protocol for the information that is sent in

each packet, as shown in Fig. 1. Every sending port has 2 things in common. The

first is the request ID, which is a number that accompanies each packet so that the

programs can keep track of the information. The second piece is the node ID, which

is the identifying number of a specific node on the CyAMS graph. Besides these

common pieces of information, each port sends different pieces of information. An

attempt was made to keep similar pieces of information together for usability pur-

poses. When the programs are expanded in the future, the protocol will allow new

ports to be added with ease.

Figure 1. Port layout diagram depicting the communication between the programs.

4

Fig. 1 Model showing the port protocol between the programs

5

Note that the World Wind GUI is one of the programs that receives information

using this protocol. The World Wind GUI receives state updates from the CyAMS

simulation any time a node within the simulation changes state. In addition to node

state changes, the GUI also receives any data regarding link changes that may occur

as a result of the simulation or due to a critical path change. These state changes

will then be reflected within the GUI itself. This can be seen in Fig. 2. The links

highlighted in yellow represent the critical path nodes that are required for the mis-

sion: the green node is patched or immune and the red node is the source of the

infection.

6

Fig. 2 World Wind GUI

7

2.2 Communications Program Output

The communications program is the main program that connects the CyFiA

knowledge base program, Risk-Cost program, and CyAMS together. In the com-

munications program, each port uses its own thread so that packets are not skipped.

After the program receives each packet, it resends the packet to both the CyFiA and

the Risk-Cost program. This is repeated with packets being received from the

CyFiA and Risk-Cost programs. Figure 3 depicts a window showing data sent

through the communications program by CyAMS.

Fig. 3 Program modeling data being received by the Cyber Associate and Risk-Cost pro-

gram

Figure 4 shows a window program used to test the communications program. The

upper table represents CyAMS and the different packets it will send. The lower box

represents either the CyFiA knowledge or the Risk-Cost program and the data it

would receive from CyAMS.

8

Fig. 4 Test demonstrating the communications program sending and receiving infor-

mation

2.3 Program Flow

Figure 5 shows the general flow of the program from start to finish. The program

will be started by the GUI, which is based on NASA’s World Wind (Maxwell

2004). The GUI is directly connected to CyAMS via port 4000, as seen in Fig. 1.

CyAMS will then begin to send data packets to the CyFiA and Cost program. Using

this data, the Cost program will begin to construct an onboard representation of the

network. After the construction data are sent, the CyFiA will begin to make deci-

sions based on the network/node conditions. When the CyAMS network is updated,

it will send out an update to the Risk-Cost program to add to the onboard graph. If

there are no updates and the simulation is finished, the program will end. Otherwise,

it will wait until there is an update or the program is ended. A code listing is pro-

vided in the Appendix.

9

Fig. 5 Flowchart showing the progression of the program

3. Conclusion and Future Work

The field of cyber defense is rapidly expanding. To effectively counter cyber at-

tacks, we have to be able to react quickly and respond correctly. The CyFiA will

help to evaluate the cost and utility of different agility maneuvers that may be em-

ployed within networks. As a proof of concept, we used a network simulator called

CyAMS. Using this network simulator, we will be able to obtain a course of action

for cyber agility maneuvers given a multitude of situations. To get these programs

to interact, we designed a communication protocol and program that uses ports to

exchange UDP packets. The communication protocol is easily modified and can

quickly transmit information.

Although the general layout of communication is complete, the communication

program will have to be modified when the CyFiA is extended. Another change

that can be made is the integration of the communication program into the CyFiA.

At the current state of the CyFiA, we wanted to keep the overall program more

modular. However, as it becomes more refined, the communication program can

be directly added into the CyFiA.

10

Although not directly related to the communication protocol of the program, a main

GUI could also be added to the program. This GUI would allow the user to more

easily interface with the CyFiA by looking at things such as a network map or a list

of outputs. Although the CyFiA is meant to aid a human operator, having a user-

friendly interface will make more effective use of the system output.

We would also like to note that while Ports 3010–4001 work fine in our environ-

ment, they are previously designated for use by other programs/devices in open

forums. For instance, Port 3070 is designated for mgxswitch communication de-

vices, and Port 3010 is specified for the Telerate Workstation communication (Ad-

min Subnet 2015). In the future, the programs/protocol will be modified to use

ephemeral ports (i.e., ports 49152 through 65535) to avoid collision with previously

specified port designations. Ephemeral ports are temporary ports assigned by a ma-

chine’s IP stack and are assigned from a designated range of ports for this purpose.

11

4. References

Admin Subnet: TCP/UDF port finder [updated 2014 Aug 26; accessed 2015 Feb

2]. http://www.adminsub.net/tcp-udp-port-finder/3070.

Buchler N, Marusich L, Bakdash J, Sokoloff S, Hamm R. The warfighter associate:

objective and automated metrics for mission command. Paper presented at:

 18th International Command and Control Research and Technology Sympo-

sium; 2013 Jun 19–21; Alexandria, VA.

Maxwell C, Kim R, Gaskins T, Lam B, Hogan P. World wind. Moffett Field (CA):

NASA Ames Research Center; 2004 [accessed 2014 Aug 4].

http://worldwind.arc.nasa.gov/features.html, 2004.

ns-3. Documentation; c2015 [accessed 4 Aug 2014]. http://www.nsnam.org

/documentation/.

Postel J. Internet Engineering Task Force (IETF): RFC 768, User Datagram Proto-

col; 1980 Aug 28 [accessed 2015 Apr 28]. https://www.ietf.org/rfc/rfc768.txt.

Smith D. The Pilot’s Associate Program; 2004 [accessed 4 Aug 2014].

 http://www.dms489.com/PA/PA_index.html.

12

INTENTIONALLY LEFT BLANK.

13

Appendix. Code Listing

 This appendix appears in its original form, without editorial change.

14

ThreadClass.java (main)

import java.util.ArrayList;

public class ThreadClass {

 public static void main(String[] args) {

 ArrayList <Thread> threads = new ArrayList <Thread>();

 //Decision <-

 Sending port3010 = new Sending(3011, 3010);

 Thread thread3010 = new Thread(port3010);

 threads.add(thread3010);

 //Critical Path <-

 Sending port3020 = new Sending(3020, 3022);

 Thread thread3020 = new Thread(port3020);

 threads.add(thread3020);

 //Node Info ->

 Sending port3030 = new Sending(3030, 3031, 3032);

 Thread thread3030 = new Thread(port3030);

 threads.add(thread3030);

 //Throughput ->

 Sending port3040 = new Sending(3040, 3041, 3042);

 Thread thread3040 = new Thread(port3040);

 threads.add(thread3040);

 //Node Health ->

 Sending port3050 = new Sending(3050, 3051, 3052);

 Thread thread3050 = new Thread(port3050);

 threads.add(thread3050);

 //capability->

 Sending port3060 = new Sending(3060, 3061, 3062);

 Thread thread3060 = new Thread(port3060);

 threads.add(thread3060);

 //Location ->

 Sending port3070 = new Sending(3070, 3071, 3072);

 Thread thread3070 = new Thread(port3070);

 threads.add(thread3070);

 for(Thread i: threads){

 i.start();

 }

15

 for(Thread i: threads){

 try {

 i.join();

 } catch (InterruptedException e) {

 }

 }

 }

}

Sending.java

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

public class Sending implements Runnable{

 int receiving, sending1, sending2;

 //receiving from one port sending to two

 public Sending(int receiving, int sending1, int sending2){

 this.receiving = receiving;

 this.sending1 = sending1;

 this.sending2 = sending2;

 }

 //receiving from one port sending to one

 public Sending(int receiving, int sending1){

 this.receiving = receiving;

 this.sending1 = sending1;

 this.sending2 = 0;

 }

 //Call this method to run each instance

 public void Run() throws Exception{

 DatagramSocket serverSocket = new DatagramSocket(re-

ceiving);

 while(true)

 {

 byte[] receiveData = new byte[1024];

 byte[] sendData = new byte[1024];

 //receives packet

 DatagramPacket receivePacket = new Datagram-

Packet(receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

 //for testing purposes

16

 String inData = new String(receivePacket.get-

Data());

 //System.out.println(inData);

 //sets the IP Address to that of this machine

 InetAddress IPAddress = InetAddress.getBy-

Name("localhost");

 //just for clarity purposes

 sendData = receiveData;

 //makes a new Datagram and sends it

 DatagramPacket sendPacket =

 new DatagramPacket(sendData,

sendData.length, IPAddress, sending1);

 serverSocket.send(sendPacket);

 //if the second port is present, it sends it to that one.

 if(sending2 > 0){

 DatagramPacket sendPacket2 =

 new Datagram-

Packet(sendData, sendData.length, IPAddress, sending2);

 serverSocket.send(sendPacket2);

 }

 }

 }

 //Runnables run method calls Run method

 public void run() {

 try {

 this.Run();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Receiving.java

package CyFi_and_Cost_analysis;

import java.net.DatagramPacket;

import java.net.DatagramSocket;

import java.net.InetAddress;

public class Receiving implements Runnable{

 int receiving;

 int sending1;

 byte[] sendData = new byte[1024];

17

 public Receiving(int receiving){

 this.receiving = receiving;

 }

 public void Run() throws Exception

 {

 DatagramSocket serverSocket = new DatagramSocket(re-

ceiving);

 byte[] receiveData = new byte[1024];

 while(true)

 {

 //receives packet

 DatagramPacket receivePacket = new Datagram-

Packet(receiveData, receiveData.length);

 serverSocket.receive(receivePacket);

 //for testing purposes

 String inData = new String(receivePacket.get-

Data());

 System.out.println(inData);

 //*****Sends to the Decision Port*****

 String out = "Received Decision";

 sendData = out.getBytes();

 //sets the IP Address to that of this machine

 InetAddress IPAddress = InetAddress.getBy-

Name("localhost");

 //makes a new Datagram and sends it

 DatagramPacket sendPacket =

 new DatagramPacket(sendData,

sendData.length, IPAddress, 3011);

 serverSocket.send(sendPacket);

 //if the second port is present, it sends it to that one.

 //*****Sends to the Request Port

 String out1 = "Received Request";

 sendData = out1.getBytes();

 //sets the IP Address to that of this machine

 InetAddress IPAddress1 = InetAddress.getBy-

Name("localhost");

 //makes a new Datagram and sends it

 DatagramPacket sendPacket1 =

 new DatagramPacket(sendData,

sendData.length, IPAddress1, 3021);

 serverSocket.send(sendPacket1);

 //if the second port is present, it sends it to that one.

 }

18

 }

 public void run() {

 try {

 this.Run();

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

 End of code Listing

19

 1 DEFENSE TECHNICAL

 (PDF) INFORMATION CTR

 DTIC OCA

 2 DIRECTOR

 (PDF) US ARMY RESEARCH LAB

 IMAL HRA

 RDRL CIO LL

 1 GOVT PRINTG OFC

 (PDF) A MALHOTRA

5 DIR USARL

 (PDF) RDRL CIH C

 J CLARKE

 B HENZ

 S BROWN

RDRL CIN D

 L MARVEL

 RDRL CIN T

 A SWAMI

20

INTENTIONALLY LEFT BLANK.

